Algorithms for NLP

Machine Translation II

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

Announcements

- Project 4: Word Alignment!
- Will be released soon! (~Monday)

corpus

Phrase-Based System Overview

cat ||| chat ||| 0.9 the cat ||| le chat ||| 0.8 dog ||| chien ||| 0.8 house ||| maison ||| 0.6 my house ||| ma maison ||| 0.9 language ||| langue ||| 0.9

Phrase table (translation model)

Word Alignment

IBM Models 1/2

Model Parameters

Emissions: $P(F_1 = Gracias | E_{A_1} = Thank)$ *Transitions:* $P(A_2 = 3)$

EM for Models 1/2

Model 1 Parameters:

Translation probabilities (1+2) $P(f_j|e_i)$ Distortion parameters (2 only) $P(a_j=i|j,I,J)$

- Start with $P(f_j|e_i)$ uniform, including $P(f_j|null)$
- For each sentence:
 - For each French position j
 - Calculate posterior over English positions

$$P(a_j = i|f, e) = \frac{P(a_j = i|j, I, J)P(f_j|e_i)}{\sum_{i'} P(a_j = i'|j, I, J)P(f_j|e_i')}$$

- (or just use best single alignment)
- Increment count of word f_i with word e_i by these amounts
- Also re-estimate distortion probabilities for model 2
- Iterate until convergence

Monotonic Translation

Japan shaken by two new quakes

Le Japon secoué par deux nouveaux séismes

Local Order Change

Japan is at the junction of four tectonic plates

Le Japon est au confluent de quatre plaques tectoniques

Phrase Movement

On Tuesday Nov. 4, earthquakes rocked Japan once again

Des tremblements de terre ont à nouveau touché le Japon jeudi 4 novembre.

The HMM Model

Model Parameters

Emissions: $P(F_1 = Gracias | E_{A_1} = Thank)$ Transitions: $P(A_2 = 3 | A_1 = 1)$

The HMM Model

- Model 2 preferred global monotonicity
- We want local monotonicity:
 - Most jumps are small
- HMM model (Vogel 96)

f	$t(f \mid e)$
nationale	0.469
national	0.418
nationaux	0.054
nationales	0.029

- Re-estimate using the forward-backward algorithm
- Handling nulls requires some care

AER for HMMs

Model	AER
Model 1 INT	19.5
HMM E→F	11.4
HMM F→E	10.8
HMM AND	7.1
HMM INT	4.7
GIZA M4 AND	6.9

Phrase-Based MT

Phrase-Based Translation Overview

Translations:

I'll do it quickly . translates phrase by phrase,

quickly | I'll do it |. and considers reorderings.

The decoder...

Input: lo haré rápidamente. tries different segmentations,

Objective:

$$\arg \max_{\mathbf{e}} \left[P(\mathbf{f}|\mathbf{e}) \cdot P(\mathbf{e}) \right]$$

$$\arg \max_{\mathbf{e}} \left[\prod_{\langle \bar{e}, \bar{f} \rangle} P(\bar{f}|\bar{e}) \cdot \prod_{i=1}^{|\mathbf{e}|} P(e_i|e_{i-1}, e_{i-2}) \right]$$

Phrase-Based Decoding

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	•
the	7 people	including	by some		and	the russian	the	the astronauts		,
it	7 people inc	luded	by france		and the	the russian		international astronautical	of rapporteur .	
this	7 out	including the	from	the french	and the	ussian	the fift	h		
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	
	7 include		from the	of france ar	nd	russian		astronauts		. the
	7 numbers i	nclude	from france		and russi	an	of astro	onauts who		. "
	7 populations include those from france		ice and russian			astronauts.				
	7 deportees	included	come from	france and russia		ssia	in	astronautical	personnel	;
	7 philtrum	including thos		france and russia		russia	a space		member	
		including repre	esentatives from		france and the russia france and russia			astronaut		
		include	came from	france an			by cost			
		include represe	entatives from	french	and rus	ssia	v. 173	cosmonauts		
		include	came from franc	ce	and russi	a 's		cosmonauts.		35
		includes	coming from	french and		russia 's	7	cosmonaut	0	
				french and	russian		's	astronavigation	member .	
				french	and rus	ssia	astro	nauts		
					and russi	a 's		7	special rapporteur	
					, and	russia			rapporteur	
. 1					, and rus	sia	U .		rapporteur.	
, i				6	, and rus	sia	~		e distrib	
					or	russia 's				

Decoder design is important: [Koehn et al. 03]

The Pharaoh "Model"

The Pharaoh "Model"

$$P(f|e) = P(\{\bar{e}_i\}|e) \prod_{i} \phi(\bar{f}_i|\bar{e}_i) d(a_i - b_{i-1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{1}{K} \frac{count(\bar{f}_i, \bar{e}_i)}{count(\bar{e}_i)} \alpha^{|a_i - b_{i-1}|}$$

Where do we get these counts?

Phrase Weights

How the MT community estimates $P(\bar{f}|\bar{e})$

Parallel training sentences

provide phrase pair counts.

Gracias , <u>lo haré</u> de muy buen grado . Thank you , <u>l shall do so</u> gladly .

Io haré $\langle = \rangle$ I shall do so 44 times in the corpus

All phrase pairs are counted,

and counts are normalized.

$$P(\bar{f}|\bar{e}) = \frac{\operatorname{count}(\bar{f}, \bar{e})}{\operatorname{count}(\bar{e})}$$

Phrase-Based Decoding

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ did_not.	give	a	<u>slap</u>	to	the	_witch_ green	green_ witch
	<u>no</u> did no		slap			the		
		i. give				ne		
			sl	ap		the t	witch	

Monotonic Word Translation

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not did_not.	<u>give</u>	a	slap	t.o	the	_witch_	_green_
	no							

- Cost is LM * TM
- It's an HMM?
 - P(e|e₋₁,e₋₂)
 - P(f|e)
- State includes
 - Exposed English
 - Position in foreign
- Dynamic program loop?

for (fPosition in 1...|f|) for (eContext in allEContexts) for (eOption in translations[fPosition]) score = scores[fPosition-1][eContext] * LM(eContext+eOption) * TM(eOption, fWord[fPosition]) scores[fPosition][eContext[2]+eOption] = $_{max}$ score

Beam Decoding

- For real MT models, this kind of dynamic program is a disaster (why?)
- Standard solution is beam search: for each position, keep track of only the best k hypotheses

```
for (fPosition in 1...|f|)
for (eContext in bestEContexts[fPosition])
for (eOption in translations[fPosition])
score = scores[fPosition-1][eContext] * LM(eContext+eOption) * TM(eOption, fWord[fPosition])
bestEContexts.maybeAdd(eContext[2]+eOption, score)
```

- Still pretty slow... why?
- Useful trick: cube pruning (Chiang 2005)

	1	4	7
1	2	5	8
2	3	6	9
6	7	10	13
10	11	14	17

	1	4	7
1	2	5	
2	3		
6			
10			

1	4	7
2	5	
3	6	
7		

1	4	7
2	5	8
3	6	
7		

Phrase Translation

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not did_not no	<u>give</u>	aslap		tothe		_wit.ch_ green	green_ witch
	did_no	t. give			t.	o		
			sl	ap		the t	witch	

If monotonic, almost an HMM; technically a semi-HMM

```
for (fPosition in 1...|f|)
for (lastPosition < fPosition)
for (eContext in eContexts)
for (eOption in translations[fPosition])
... combine hypothesis for (lastPosition ending in eContext) with eOption
```

If distortion... now what?

Non-Monotonic Phrasal MT

Pruning: Beams + Forward Costs

- Problem: easy partial analyses are cheaper
 - Solution 1: use beams per foreign subset
 - Solution 2: estimate forward costs (A*-like)

The Pharaoh Decoder

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ _did_not_	<u>give</u>	a	<u>slap</u>	t.o	the	_witch_ green	<u>green</u> witch
	no did_no	t. give	slap			the		
					+.1	ne		
			sl	ap		the t	witch	

Maria	no	dio una bofetada	a la	bruja	verde
				\	
Mary	did not	slap	the	green	witch

Hypotheis Lattices

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not_ _did_not_ no	give	<u>a slap</u> <u>a slap</u> slap		to by	the	_witch_ green	<u>green</u> witch
	did_no	ot. give		t.o t.he				
	slap				the witch			

Parameter Tuning

Counting Phrase Pairs

Input:

Gracias , lo haré de muy buen grado . Thank you , l shall do so gladly .

First, we learn word alignments,

then we infer aligned phrases.

Thank you , I shall do so gladly .

Gloss

Gracias Thanks

that

haré do [first; future]

lo

de

muy

buen

grado

of

very

good

degree

.

What Happens in Practice

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you , I shall do so gladly .

Gloss

Gracias Thanks

,

that

do [first; future]

of

very

good

degree

•

What Happens in Practice

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you , I shall do so gladly .

What Happens in Practice

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you, I shall do so gladly.

Gloss

Thanks Gracias

that

do [first; future]

of

very

good

degree

Phrase Scoring

$$\phi_{new}(\bar{e}_j|\bar{f}_i) = \frac{c(\bar{f}_i, \bar{e}_j)}{c(\bar{f}_i)}$$

- Learning weights has been tried, several times:
 - [Marcu and Wong, 02]
 - [DeNero et al, 06]
 - ... and others
- Seems not to work well, for a variety of partially understood reasons
- Main issue: big chunks get all the weight, obvious priors don't help
 - Though, [DeNero et al 08]

Phrase Size

Phrases do help

- But they don't need to be long
- Why should this be?

Lexical Weighting

```
\phi(\bar{f}_i|\bar{e}_i) = \frac{count(\bar{f}_i,\bar{e}_i)}{count(\bar{e}_i)} p_w(\bar{f}_i|\bar{e}_i) \quad .28 
                      f1 f2 f3
                                                             .26
            NULL
                e1
                      ## -- --
                                                             .25
                e2 -- ## --
                e3 -- ## --
                                                             .24
     p_w(\bar{f}|\bar{e},a) = p_w(f_1f_2f_3|e_1e_2e_3,a)
                                                             .23
                     = w(f_1|e_1)
                          \times \frac{1}{2}(w(f_2|e_2) + w(f_2|e_3))
                                                                                        ---- lex
                                                                                           — no-lex
                          \times w(f_3|\text{NULL})
                                                                       20k 40k 80k 160k 320k
```


Tuning for MT

- Features encapsulate lots of information
 - Basic MT systems have around 6 features
 - P(e|f), P(f|e), lexical weighting, language model

How to tune feature weights?

Idea 1: Use your favorite classifier

Why Tuning is Hard

- Problem 1: There are latent variables
 - Alignments and segementations
 - Possibility: forced decoding (but it can go badly)

Why Tuning is Hard

- Problem 3: Computational constraints
 - Discriminative training involves repeated decoding
 - Very slow! So people tune on sets much smaller than those used to build phrase tables

Minimum Error Rate Training

- Standard method: minimize BLEU directly (Och 03)
 - MERT is a discontinuous objective
 - Only works for max ~10 features, but works very well then
 - Here: k-best lists, but forest methods exist (Machery et al 08)
 - Recently, lots of alternatives being explored for more features

MERT

MERT

Phrase Movement

The HMM Model

Distortion θ_d

$$p(\uparrow \uparrow) = 0.6$$

 $p(\uparrow) = 0.2$
 $p(\searrow) = 0.1$

Translation θ_t

$$\begin{array}{l} p(\text{ the} \rightarrow \text{le} \\ p(\text{ the} \rightarrow \text{la} \\ p(\text{ railroad} \rightarrow \text{ ferroviaire}) = \textbf{0.53} \\ p(\text{ NULL} \rightarrow \text{le} \\) = 0.12 \end{array}$$

. . .